

高速・低消費電力HPC Systemの実現には"光インターコネクション"が必要

電気から光の世界へ

Interconnection

Keio University

ため、クロストークが起こりにくい

TOWARD EXA-SCALE COMPUTING

情報光学研究室が提案するテラビット光インターコネクションの世界

ポリマー並列光導波路作製法

Fabrication

KEIO TECHNO-MALL 2020

<u> 円形GI型コア:基板の所望の位置に形成可能</u>

屈折率

- 1 575

- 1.570 - 1.568

多段導波路(断面写真)

テーパ構造(Spot Size Converter)

コア径3 µm程度へ

制御可能

Si細線導波路・シングルモードファイバとの高接続性を実現可能

<u>高密度·自由配線</u>

屈折率分布図

鉛直方向コア

100 µm

VCSE

KEIO TECHNO-MALL 2020

GI-CORE POLYMER PARALLEL OPTICAL WAVEGUIDE

GI型ポリマー並列光導波路の作製・実装性能評価

ポリマー並列光導波路回路

Optical Circuit

Imprint Method

インプリント法

高速信号伝送特性

Smu aton

導波路モードソルバ FIMMWAVE

伝搬光解析

光線追跡法 **Ray Trace**

45°ミラーによる光路変換解析

光線が反射する様子 (GI型コア)

NEW PHOTONIC DEVICES

光を操る新しいフォトニックデバイス

希土類ドープ光導波路

Designed by Info-optics Lab.

KEIO TECHNO-MALL 2020

Rare earth

<u>希土類(RE)-金属(M)ナノクラスタ</u>

希土類イオンの誘導放出により信号を増幅

ア材料

100 150

時間 [ps]

40

レーザの各モードの位相を揃えると

光が共振器を往復する時間間隔で短パルスが放出される現象

-150

-100

-50

