

グローバルに情報をネットワーク化

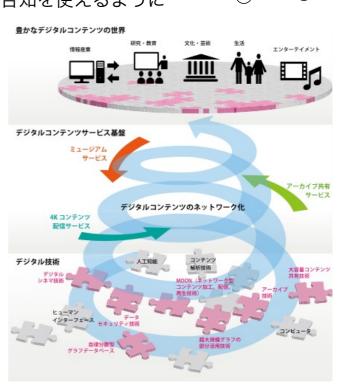
次世代の情報サービスを支える技術

慶應義塾大学 理工学部 情報工学科 金子研究室

デジタル情報社会の今後

- デジタル情報の量の肥大化、数の増加
 - デジタル入力・出力デバイスの普及(例:センサのデジタル化)
 - デジタル加工に十分な計算資源(例:クラウド)
- 増加し続けるデジタル情報を使いこなせるか?
 - デジタル情報は、生成と保管に**コスト**がかかる資産
 - デジタル情報がなるべく**多く利用**されることが重要
- 検索技術の限界
 - 検索エンジンを基盤にした上位サービスの構築ができない

・ キーワードが必要・ 厖大なヒット件数・ 情報反映に遅延あり・ 特定事業者の寡占


ポスト検索:デジタル情報のネットワーク化

- 関係あるデジタル情報間でネットワーク(グラフ)を構成
 - デジタル情報ファイルをノードとしたグラフ
 - だれでも自由に関係をエッジとして追加できるグラフ
- ネットワークはデジタル情報間の関係の集合知
 - 関係するデジタル情報の存在に速やかに気づけるように 🔎
 - 幅広く多くのサービスが簡単に集合知を使えるように

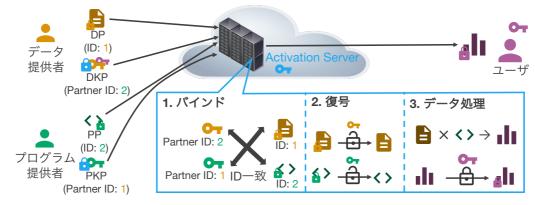
E F I y y J J

研究テーマ

- グローバルな自律分散型グラフシス テムの構成
- グローバル環境で管理される大規模 グラフ情報の高速取得
- 関係をどのようなグラフに表現する のか?
- グラフをどのように演算して関係情報を利用するのか?
- ディレクトリシステムや検索との効果的な組み合わせ
- 具体的なアプリケーションの開発

安全なデータ共有を実現する 用途を限定したデータ共有基盤

慶應義塾大学 荻谷 凌, 髙橋 広大, 金子 晋丈 {haru, combu, kaneko}@inl.ics.keio.ac.jp


ビッグデータ共有の課題

- ビッグデータの用途の多様性
 - ビッグデータが持つ多様な潜在的価値をプログラム処理により顕在化
 - データとプログラムの組み合わせで用途が一意に決定
- データの用途を限定しないことによるデータ提供者の不利益
 - e.g., 個人情報漏洩, データの利用価値低下

Activation Server

- データとプログラムをバインドし、その組に限ったデータ処理を実行する データ共有の仲介サーバ
- Data Package/Program Package (DP/PP)
 - 暗号化したデータ/プログラム+IDなどのメタ情報を記述したXMLファイル群
- Data Key Package/Program Key Package (DKP/PKP)
 - 用途(データとプログラムの組み合わせなど)を記述したXMLファイル
 - データ/プログラム復号鍵+バインド相手プログラム/データのID+メタ情報

今後の展開と活用例

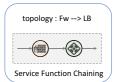
- Activation Serverのクラスタ化によるデータ処理の高速化
- 世界中に配置されたサーバ同士が自律分散的に協調し、世界中のデータを共有
- 活用例
 - 企業間のデータ連携による新サービス創造
 - 所有するデータの安全な二次利用

Balloon System

分散アプリケーションをSFCに導入するための基盤

{totti@inl.ics.keio.ac.jp, kaneko@dmc.keio.ac.jp} 慶應義塾大学 大竹 淳, 金子 晋丈

これからの情報モデル


- 潤沢なコンピュータ資源
 - 大規模な分散処理アプリケーション を誰もが簡易的に利用可能に
- 5Gネットワークの実用化による 通信のさらなる発展

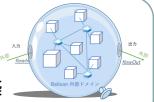
要素技術

Software Defined Networking: ネットワークを仮想化し集中管理 柔軟な経路選択など可能

Service Function Chaining: トポロジーを作成し 通信の途中で計算

contents

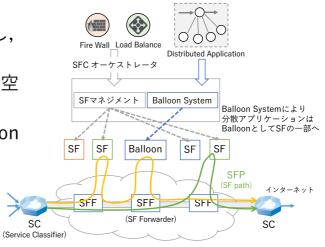
ネットワークの一部で計算加工する要求



[1J.M. Halpern and C. Pignataro, "Service Function Chaining (SFC) Architecture," RFC 7665, Oct. 2015. https://rfc-editor.org/rfc/rfc7665.txt

Balloon Systemの提案

Balloon:


分散アプリケーションをSF化したモジュールの集合で SFCドメイン内部に作成されるドメインを指す 必ず入出力を一つ以上もち、内部はコンテナネットワークで構築

Balloon

- **Balloon System**
 - SFCオーケストレータの一部に配置し、 既存のSFCとの共存を目指す
 - 集中管理機構により、Balloonの名前空 間やネットワークを一元管理
 - サービスの規模により、柔軟にBalloon の大きさを増減可能

フロールール数を維持しつつBalloonを展開 リソースマネジメントの重要性が高い

PTP 同期精度向上にむけた 動的帯域制御の開発

慶應義塾大学 堀田幸暉/志賀野泰岳/寺岡文男/金子晋丈 {kenny/pika/tera/kaneko}@inl.ics.keio.ac.jp

同期精度向上に向けて

- Precision とリンク利用率の関係
 - リンク利用率が高負荷時にPrecision が低減
- リンク利用率を高負荷状態を常に維持
 - 目標:遅延を一定化
- IEEE1588 の精同期度向上技術
 - 全ての要求を満たすことが困難

図1. Precision とリンク利用率の関係

表1. 現在の同期精度向上技術の比較

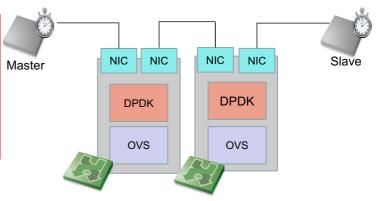
	IEEE1588 に定義された機能		PTP パケット優先処理		
	TC	ВС	VLAN priority	産業用ネットワーク (TSN)	
				802.1Qcr	802.3br
要求同期精度	0	0	×	0	0
スイッチ性能依存	性能依存		0	_	_
導入コスト	高い		低い	高い	
実装、導入の容易さ	難		容	難	

処理の流れ

- 同期精度向上の手法
 - リンク利用率を一定にする
 - PTPパケットを検出
 - 常に高負荷状態になるよう リンク利用率を動的制御
- PTPパケットの検出
 - 継続的に NIC でトラフィックを監視

リンク利用率を 動作速度:512ns 正常時に戻す (リンクを1Gbpsとした場合) PTP PTP リンク利用率が一定 パケットの パケットの になるよう制御 検出 検出 Open vSwitch **DPDK NIC NIC**

Open vSwitch


- 多層仮想スイッチ
- 大規模なネットワーク拡張を実現

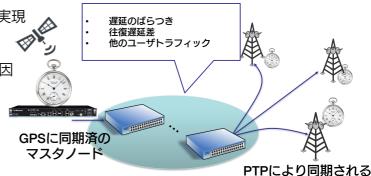
DPDK (Data Plane Development Kid)

- ネットワークスタック処理の高速化
- PMD (Pull Mode Driver)によりデータの 到達の確認, 受信処理を専用スレッドが 継続的に実行

今後の課題

- 現在は DPDK を利用し NIC で PTP パケットを検出
 - リンク利用率を動的に高負荷状態にする技術の開発

広域ネットワークにおける 高精度時刻同期の実現に向けて

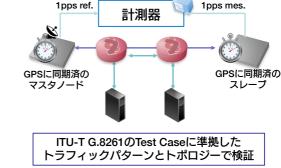

慶應義塾大学 堀田幸暉/志賀野泰岳/寺岡文男/金子晋丈 {kenny/pika/tera/kaneko}@ inl.ics.keio.ac.jp

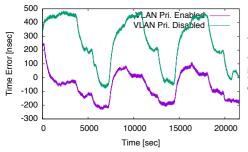
背景

- □ 近年高精度時刻同期の需要が増加
 - 携帯電話事業,放送事業,証券取引, 電力送電
- □ 従来のGPSを用いた時刻同期手法の問題点
 - 設置コスト, 地理的制約
 - GPS信号への妨害やGPSの時刻のズレ
- □ ネットワークを利用した高精度な時刻同期 が求められている
- PTP (IEEE1588)を利用したサブマイクロ秒 精度の時刻同期を目指す
 - ・ 標準的な時刻同期プロトコル(NTP):ミリ秒精度

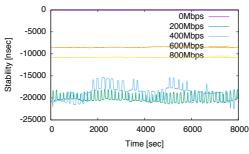
PTP (IEEE1588)

- PTP(IEEE1588)はネットワークで高精度時刻同期を実現
 - <u>往路と復路の遅延は等しいと仮定して</u> 時刻差分と遅延を計算
 - 広域ネットワークにはPTPの精度劣化させる要因が存在
- □ 同期精度向上を実現する技術
 - Boundary Clock
 - Transparent Clock
 - PTPパケットの優先制御技術
- □ 各技術は統一の評価手法で評価されておらず 同期精度改善への寄与の度合いは不明




広域ネットワーク網

PTPにより同期される スレーブノード


PTP (IEEE1588)の同期精度向上技術の性能検証

- □ 評価手法
 - 評価軸をITU-T勧告とPTP (IEEE1588) 標準に準拠
 - ITU-T G.8261勧告のTest Caseに準拠
- □ 評価対象
 - Baseline Test (精度向上技術 併用なし)
 - VLAN優先度 (IEEE802.1p)
 - Boundary Clock (全ノード/一部ノード)
 - Synchronous Ethernet
- □ 評価例

VLAN 優先度使用時の同期精度 ITU-T G.8261 Test Case 14

部分的BC使用時の故障時の精度 ITU-T G.8261 Test Case 13

- VLAN優先度は150ns程度同期精度を向上
- 全ノードBC使用時はサブマイクロ秒の 同期精度を実現
 - 部分的BC使用時には安定同期不可能